Over-The-Air Clustered Wireless Federated Learning

7 Nov 2022  ·  Ayush Madhan-Sohini, Divin Dominic, Nazreen Shah, Ranjitha Prasad ·

Privacy and bandwidth constraints have led to the use of federated learning (FL) in wireless systems, where training a machine learning (ML) model is accomplished collaboratively without sharing raw data. While using bandwidth-constrained uplink wireless channels, over-the-air (OTA) FL is preferred since the clients can transmit parameter updates simultaneously to a server. A powerful server may not be available for parameter aggregation due to increased latency and server failures. In the absence of a powerful server, decentralised strategy is employed where clients communicate with their neighbors to obtain a consensus ML model while incurring huge communication cost. In this work, we propose the OTA semi-decentralised clustered wireless FL (CWFL) and CWFL-Prox algorithms, which is communication efficient as compared to the decentralised FL strategy, while the parameter updates converge to global minima as O(1/T) for each cluster. Using the MNIST and CIFAR10 datasets, we demonstrate the accuracy performance of CWFL is comparable to the central-server based COTAF and proximal constraint based methods, while beating single-client based ML model by vast margins in accuracy.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here