Overcoming Label Ambiguity with Multi-label Iterated Learning

29 Sep 2021  ·  Sai Rajeswar Mudumba, Pau Rodriguez, Soumye Singhal, David Vazquez, Aaron Courville ·

Transfer learning from ImageNet pre-trained models has become essential for many computer vision tasks. Recent studies have shown that ImageNet includes label ambiguity, where images with multiple object classes present are assigned a single label. This ambiguity biases models towards a single prediction, which could result in the suppression of classes that tend to co-occur in the data. Recent approaches have explored either fixing the evaluation datasets or using costly procedures to relabel the training data. In this work, we propose multi-label iterated learning (MILe) to incorporate the inductive biases of multi-label learning from single labels using the framework of iterated learning. MILe is a simple, yet effective procedure that alternates training a teacher and a student network with binary predictions to build a multi-label description of the images. Experiments on ImageNet show that MILe achieves higher accuracy and ReaL score than when using the standard training procedure, even when fine-tuning from self-supervised weights. We also show that MILe is effective for real-world large-scale noisy data such as WebVision. Furthermore, MILe improves performance in class incremental settings such as IIRC and is robust to distribution shifts.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here