Overview of the TREC 2020 Fair Ranking Track

11 Aug 2021  ·  Asia J. Biega, Fernando Diaz, Michael D. Ekstrand, Sergey Feldman, Sebastian Kohlmeier ·

This paper provides an overview of the NIST TREC 2020 Fair Ranking track. For 2020, we again adopted an academic search task, where we have a corpus of academic article abstracts and queries submitted to a production academic search engine. The central goal of the Fair Ranking track is to provide fair exposure to different groups of authors (a group fairness framing). We recognize that there may be multiple group definitions (e.g. based on demographics, stature, topic) and hoped for the systems to be robust to these. We expected participants to develop systems that optimize for fairness and relevance for arbitrary group definitions, and did not reveal the exact group definitions until after the evaluation runs were submitted.The track contains two tasks,reranking and retrieval, with a shared evaluation.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here