PanNet: A Deep Network Architecture for Pan-Sharpening

We propose a deep network architecture for the pan-sharpening problem called PanNet. We incorporate domain-specific knowledge to design our PanNet architecture by focusing on the two aims of the pan-sharpening problem: spectral and spatial preservation. For spectral preservation, we add up-sampled multispectral images to the network output, which directly propagates the spectral information to the reconstructed image. To preserve spatial structure, we train our network parameters in the high-pass filtering domain rather than the image domain. We show that the trained network generalizes well to images from different satellites without needing retraining. Experiments show significant improvement over state-of-the-art methods visually and in terms of standard quality metrics.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.