Parallel and Distributed Block-Coordinate Frank-Wolfe Algorithms

We develop parallel and distributed Frank-Wolfe algorithms; the former on shared memory machines with mini-batching, and the latter in a delayed update framework. Whenever possible, we perform computations asynchronously, which helps attain speedups on multicore machines as well as in distributed environments. Moreover, instead of worst-case bounded delays, our methods only depend (mildly) on \emph{expected} delays, allowing them to be robust to stragglers and faulty worker threads. Our algorithms assume block-separable constraints, and subsume the recent Block-Coordinate Frank-Wolfe (BCFW) method~\citep{lacoste2013block}. Our analysis reveals problem-dependent quantities that govern the speedups of our methods over BCFW. We present experiments on structural SVM and Group Fused Lasso, obtaining significant speedups over competing state-of-the-art (and synchronous) methods.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods