Parallelising MCMC via Random Forests

21 Nov 2019Wu ChangyeChristian P. Robert

For Bayesian computation in big data contexts, the divide-and-conquer MCMC concept splits the whole data set into batches, runs MCMC algorithms separately over each batch to produce samples of parameters, and combines them to produce an approximation of the target distribution. In this article, we embed random forests into this framework and use each subposterior/partial-posterior as a proposal distribution to implement importance sampling... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet