Pareto Optimization for Subset Selection with Dynamic Cost Constraints

14 Nov 2018  ·  Vahid Roostapour, Aneta Neumann, Frank Neumann, Tobias Friedrich ·

We consider the subset selection problem for function $f$ with constraint bound $B$ that changes over time. Within the area of submodular optimization, various greedy approaches are commonly used. For dynamic environments we observe that the adaptive variants of these greedy approaches are not able to maintain their approximation quality. Investigating the recently introduced POMC Pareto optimization approach, we show that this algorithm efficiently computes a $\phi= (\alpha_f/2)(1-\frac{1}{e^{\alpha_f}})$-approximation, where $\alpha_f$ is the submodularity ratio of $f$, for each possible constraint bound $b \leq B$. Furthermore, we show that POMC is able to adapt its set of solutions quickly in the case that $B$ increases. Our experimental investigations for the influence maximization in social networks show the advantage of POMC over generalized greedy algorithms. We also consider EAMC, a new evolutionary algorithm with polynomial expected time guarantee to maintain $\phi$ approximation ratio, and NSGA-II with two different population sizes as advanced multi-objective optimization algorithm, to demonstrate their challenges in optimizing the maximum coverage problem. Our empirical analysis shows that, within the same number of evaluations, POMC is able to perform as good as NSGA-II under linear constraint, while EAMC performs significantly worse than all considered algorithms in most cases.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here