Partially Shared Multi-Task Convolutional Neural Network With Local Constraint for Face Attribute Learning

CVPR 2018  ·  Jiajiong Cao, Yingming Li, Zhongfei Zhang ·

In this paper, we study the face attribute learning problem by considering the identity information and attribute relationships simultaneously. In particular, we first introduce a Partially Shared Multi-task Convolutional Neural Network (PS-MCNN), in which four Task Specific Networks (TSNets) and one Shared Network (SNet) are connected by Partially Shared (PS) structures to learn better shared and task specific representations. To utilize identity information to further boost the performance, we introduce a local learning constraint which minimizes the difference between the representations of each sample and its local geometric neighbours with the same identity. Consequently, we present a local constraint regularized multi-task network, called Partially Shared Multi-task Convolutional Neural Network with Local Constraint (PS-MCNN-LC), where PS structure and local constraint are integrated together to help the framework learn better attribute representations. The experimental results on CelebA and LFWA demonstrate the promise of the proposed methods.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here