Participation de l'IRISA \`a DeFT 2018 : classification et annotation d'opinion dans des tweets (IRISA at DeFT 2018: classifying and tagging opinion in tweets )

Cet article d{\'e}crit les syst{\`e}mes d{\'e}velopp{\'e}s par l{'}{\'e}quipe LinkMedia de l{'}IRISA pour la campagne d{'}{\'e}valuation DeFT 2018 portant sur l{'}analyse d{'}opinion dans des tweets en fran{\c{c}}ais. L{'}{\'e}quipe a particip{\'e} {\`a} 3 des 4 t{\^a}ches de la campagne : (i) classification des tweets selon s{'}ils concernent les transports ou non, (ii) classification des tweets selon leur polarit{\'e} et (iii) annotation des marqueurs d{'}opinion et de l{'}objet {\`a} propos duquel est exprim{\'e}e l{'}opinion... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet