Passing Tests without Memorizing: Two Models for Fooling Discriminators

9 Feb 2019Olivier BousquetRoi LivniShay Moran

We introduce two mathematical frameworks for foolability in the context of generative distribution learning. In a nuthsell, fooling is an algorithmic task in which the input sample is drawn from some target distribution and the goal is to output a synthetic distribution that is indistinguishable from the target w.r.t to some fixed class of tests... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet