Patchnet: Interpretable Neural Networks for Image Classification

Understanding how a complex machine learning model makes a classification decision is essential for its acceptance in sensitive areas such as health care. Towards this end, we present PatchNet, a method that provides the features indicative of each class in an image using a tradeoff between restricting global image context and classification error... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet