PE2rr Corpus: Manual Error Annotation of Automatically Pre-annotated MT Post-edits

LREC 2016  ·  Maja Popovi{\'c}, Mihael Ar{\v{c}}an ·

We present a freely available corpus containing source language texts from different domains along with their automatically generated translations into several distinct morphologically rich languages, their post-edited versions, and error annotations of the performed post-edit operations. We believe that the corpus will be useful for many different applications. The main advantage of the approach used for creation of the corpus is the fusion of post-editing and error classification tasks, which have usually been seen as two independent tasks, although naturally they are not. We also show benefits of coupling automatic and manual error classification which facilitates the complex manual error annotation task as well as the development of automatic error classification tools. In addition, the approach facilitates annotation of language pair related issues.

PDF Abstract LREC 2016 PDF LREC 2016 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here