Perceptual Features as Markers of Parkinson's Disease: The Issue of Clinical Interpretability

Up to 90% of patients with Parkinson's disease (PD) suffer from hypokinetic dysathria (HD) which is also manifested in the field of phonation. Clinical signs of HD like monoloudness, monopitch or hoarse voice are usually quantified by conventional clinical interpretable features (jitter, shimmer, harmonic-to-noise ratio, etc.). This paper provides large and robust insight into perceptual analysis of 5 Czech vowels of 84 PD patients and proves that despite the clinical inexplicability the perceptual features outperform the conventional ones, especially in terms of discrimination power (classification accuracy ACC = 92 %, sensitivity SEN = 93 %, specificity SPE = 92 %) and partial correlation with clinical scores like UPDRS (Unified Parkinson's disease rating scale), MMSE (Mini-mental state examination) or FOG (Freezing of gait questionnaire), where p < 0.0001.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here