Performance Analysis and Optimization of Reconfigurable Multi-Functional Surface Assisted Wireless Communications
Although reconfigurable intelligent surfaces (RISs) can improve the performance of wireless networks by smartly reconfiguring the radio environment, existing passive RISs face two key challenges, i.e., double-fading attenuation and dependence on grid/battery. To address these challenges, this paper proposes a new RIS architecture, called multi-functional RIS (MF-RIS). Different from conventional reflecting-only RIS, the proposed MF-RIS is capable of supporting multiple functions with one surface, including signal reflection, amplification, and energy harvesting. As such, our MF-RIS is able to overcome the double-fading attenuation by harvesting energy from incident signals. Through theoretical analysis, we derive the achievable capacity of an MF-RIS-aided communication network. Compared to the capacity achieved by the existing self-sustainable RIS, we derive the number of reflective elements required for MF-RIS to outperform self-sustainable RIS. To realize a self-sustainable communication system, we investigate the use of MF-RIS in improving the sum-rate of multi-user wireless networks. Specifically, we solve a non-convex optimization problem by jointly designing the transmit beamforming and MF-RIS coefficients. As an extension, we investigate a resource allocation problem in a practical scenario with imperfect channel state information. By approximating the semi-infinite constraints with the S-procedure and the general sign-definiteness, we propose a robust beamforming scheme to combat the inevitable channel estimation errors. Finally, numerical results show that: 1) compared to the self-sustainable RIS, MF-RIS can strike a better balance between energy self-sustainability and throughput improvement; and 2) unlike reflecting-only RIS which can be deployed near the transmitter or receiver, MF-RIS should be deployed closer to the transmitter for higher spectrum efficiency.
PDF Abstract