Performance Bounds for Policy-Based Average Reward Reinforcement Learning Algorithms

NeurIPS 2023  ·  Yashaswini Murthy, Mehrdad Moharrami, R. Srikant ·

Many policy-based reinforcement learning (RL) algorithms can be viewed as instantiations of approximate policy iteration (PI), i.e., where policy improvement and policy evaluation are both performed approximately. In applications where the average reward objective is the meaningful performance metric, discounted reward formulations are often used with the discount factor being close to $1,$ which is equivalent to making the expected horizon very large. However, the corresponding theoretical bounds for error performance scale with the square of the horizon. Thus, even after dividing the total reward by the length of the horizon, the corresponding performance bounds for average reward problems go to infinity. Therefore, an open problem has been to obtain meaningful performance bounds for approximate PI and RL algorithms for the average-reward setting. In this paper, we solve this open problem by obtaining the first finite-time error bounds for average-reward MDPs, and show that the asymptotic error goes to zero in the limit as policy evaluation and policy improvement errors go to zero.

PDF Abstract NeurIPS 2023 PDF NeurIPS 2023 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here