Performance Guarantees for Schatten-$p$ Quasi-Norm Minimization in Recovery of Low-Rank Matrices

We address some theoretical guarantees for Schatten-$p$ quasi-norm minimization ($p \in (0,1]$) in recovering low-rank matrices from compressed linear measurements. Firstly, using null space properties of the measurement operator, we provide a sufficient condition for exact recovery of low-rank matrices... (read more)

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet