Persistent homology-based descriptor for machine-learning potential of amorphous structures

28 Jun 2022  ·  Emi Minamitani, Ippei Obayashi, Koji Shimizu, Satoshi Watanabe ·

High-accuracy prediction of the physical properties of amorphous materials is challenging in condensed-matter physics. A promising method to achieve this is machine-learning potentials, which is an alternative to computationally demanding ab initio calculations. When applying machine-learning potentials, the construction of descriptors to represent atomic configurations is crucial. These descriptors should be invariant to symmetry operations. Handcrafted representations using a smooth overlap of atomic positions and graph neural networks (GNN) are examples of methods used for constructing symmetry-invariant descriptors. In this study, we propose a novel descriptor based on a persistence diagram (PD), a two-dimensional representation of persistent homology (PH). First, we demonstrated that the normalized two-dimensional histogram obtained from PD could predict the average energy per atom of amorphous carbon (aC) at various densities, even when using a simple model. Second, an analysis of the dimensional reduction results of the descriptor spaces revealed that PH can be used to construct descriptors with characteristics similar to those of a latent space in a GNN. These results indicate that PH is a promising method for constructing descriptors suitable for machine-learning potentials without hyperparameter tuning and deep-learning techniques.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here