Person Re-Identification by Camera Correlation Aware Feature Augmentation

26 Mar 2017Ying-Cong ChenXiatian ZhuWei-Shi ZhengJian-Huang Lai

The challenge of person re-identification (re-id) is to match individual images of the same person captured by different non-overlapping camera views against significant and unknown cross-view feature distortion. While a large number of distance metric/subspace learning models have been developed for re-id, the cross-view transformations they learned are view-generic and thus potentially less effective in quantifying the feature distortion inherent to each camera view... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet