Personalized Education at Scale

24 Sep 2018  ·  Sam Saarinen, Evan Cater, Michael Littman ·

Tailoring the presentation of information to the needs of individual students leads to massive gains in student outcomes~\cite{bloom19842}. This finding is likely due to the fact that different students learn differently, perhaps as a result of variation in ability, interest or other factors~\cite{schiefele1992interest}. Adapting presentations to the educational needs of an individual has traditionally been the domain of experts, making it expensive and logistically challenging to do at scale, and also leading to inequity in educational outcomes. Increased course sizes and large MOOC enrollments provide an unprecedented access to student data. We propose that emerging technologies in reinforcement learning (RL), as well as semi-supervised learning, natural language processing, and computer vision are critical to leveraging this data to provide personalized education at scale.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here