Personalized Federated Learning: A Unified Framework and Universal Optimization Techniques

19 Feb 2021  ·  Filip Hanzely, Boxin Zhao, Mladen Kolar ·

We investigate the optimization aspects of personalized Federated Learning (FL). We propose general optimizers that can be applied to numerous existing personalized FL objectives, specifically a tailored variant of Local SGD and variants of accelerated coordinate descent/accelerated SVRCD. By examining a general personalized objective capable of recovering many existing personalized FL objectives as special cases, we develop a comprehensive optimization theory applicable to a wide range of strongly convex personalized FL models in the literature. We showcase the practicality and/or optimality of our methods in terms of communication and local computation. Remarkably, our general optimization solvers and theory can recover the best-known communication and computation guarantees for addressing specific personalized FL objectives. Consequently, our proposed methods can serve as universal optimizers, rendering the design of task-specific optimizers unnecessary in many instances.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods