Personalizing Many Decisions with High-Dimensional Covariates

NeurIPS 2019  ·  Nima Hamidi, Mohsen Bayati, Kapil Gupta ·

We consider the k-armed stochastic contextual bandit problem with d dimensional features, when both k and d can be large. To the best of our knowledge, all existing algorithm for this problem have a regret bound that scale as polynomials of degree at least two in k and d. The main contribution of this paper is to introduce and theoretically analyze a new algorithm (REAL Bandit) with a regret that scales by r^2(k+d) when r is rank of the k by d matrix of unknown parameters. REAL Bandit relies on ideas from low-rank matrix estimation literature and a new row-enhancement subroutine that yields sharper bounds for estimating each row of the parameter matrix that may be of independent interest.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here