Phase Retrieval Meets Statistical Learning Theory: A Flexible Convex Relaxation

13 Oct 2016  ·  Sohail Bahmani, Justin Romberg ·

We propose a flexible convex relaxation for the phase retrieval problem that operates in the natural domain of the signal. Therefore, we avoid the prohibitive computational cost associated with "lifting" and semidefinite programming (SDP) in methods such as PhaseLift and compete with recently developed non-convex techniques for phase retrieval. We relax the quadratic equations for phaseless measurements to inequality constraints each of which representing a symmetric "slab". Through a simple convex program, our proposed estimator finds an extreme point of the intersection of these slabs that is best aligned with a given anchor vector. We characterize geometric conditions that certify success of the proposed estimator. Furthermore, using classic results in statistical learning theory, we show that for random measurements the geometric certificates hold with high probability at an optimal sample complexity. Phase transition of our estimator is evaluated through simulations. Our numerical experiments also suggest that the proposed method can solve phase retrieval problems with coded diffraction measurements as well.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here