Phase transition in the family of p-resistances

NeurIPS 2011  ·  Morteza Alamgir, Ulrike V. Luxburg ·

We study the family of p-resistances on graphs for p ≥ 1. This family generalizes the standard resistance distance. We prove that for any fixed graph, for p=1, the p-resistance coincides with the shortest path distance, for p=2 it coincides with the standard resistance distance, and for p → ∞ it converges to the inverse of the minimal s-t-cut in the graph. Secondly, we consider the special case of random geometric graphs (such as k-nearest neighbor graphs) when the number n of vertices in the graph tends to infinity. We prove that an interesting phase-transition takes place. There exist two critical thresholds p^* and p^** such that if p < p^*, then the p-resistance depends on meaningful global properties of the graph, whereas if p > p^**, it only depends on trivial local quantities and does not convey any useful information. We can explicitly compute the critical values: p^* = 1 + 1/(d-1) and p^** = 1 + 1/(d-2) where d is the dimension of the underlying space (we believe that the fact that there is a small gap between p^* and p^** is an artifact of our proofs. We also relate our findings to Laplacian regularization and suggest to use q-Laplacians as regularizers, where q satisfies 1/p^* + 1/q = 1.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here