Photometric Redshift Error Estimators

6 Nov 2007  ·  Hiroaki Oyaizu, Marcos Lima, Carlos E. Cunha, Huan Lin, Joshua Frieman ·

Photometric redshift (photo-z) estimates are playing an increasingly important role in extragalactic astronomy and cosmology. Crucial to many photo-z applications is the accurate quantification of photometric redshift errors and their distributions, including identification of likely catastrophic failures in photo-z estimates. We consider several methods of estimating photo-z errors and propose new training-set based error estimators based on spectroscopic training set data. Using data from the Sloan Digital Sky Survey and simulations of the Dark Energy Survey as examples, we show that this method provides a robust, relatively unbiased estimate of photo-z errors. We show that culling objects with large, accurately estimated photo-z errors from a sample can reduce the incidence of catastrophic photo-z failures.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here