Physics-Informed CNNs for Super-Resolution of Sparse Observations on Dynamical Systems

31 Oct 2022  ·  Daniel Kelshaw, Georgios Rigas, Luca Magri ·

In the absence of high-resolution samples, super-resolution of sparse observations on dynamical systems is a challenging problem with wide-reaching applications in experimental settings. We showcase the application of physics-informed convolutional neural networks for super-resolution of sparse observations on grids. Results are shown for the chaotic-turbulent Kolmogorov flow, demonstrating the potential of this method for resolving finer scales of turbulence when compared with classic interpolation methods, and thus effectively reconstructing missing physics.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here