Physics-Informed Machine Learning for the Inverse Design of Wave Scattering Clusters

Clusters of wave-scattering oscillators offer the ability to passively control wave energy in elastic continua. However, designing such clusters to achieve a desired wave energy pattern is a highly nontrivial task. While the forward scattering problem may be readily analyzed, the inverse problem is very challenging as it is ill-posed, high-dimensional, and known to admit non-unique solutions. Therefore, the inverse design of multiple scattering fields and remote sensing of scattering elements remains a topic of great interest. Motivated by recent advances in physics-informed machine learning, we develop a deep neural network that is capable of predicting the locations of scatterers by evaluating the patterns of a target wavefield. We present a modeling and training formulation to optimize the multi-functional nature of our network in the context of inverse design, remote sensing, and wavefield engineering. Namely, we develop a multi-stage training routine with customized physics-based loss functions to optimize models to detect the locations of scatterers and predict cluster configurations that are physically consistent with the target wavefield. We demonstrate the efficacy of our model as a remote sensing and inverse design tool for three scattering problem types, and we subsequently applicability for designing clusters that direct waves along preferred paths or localize wave energy. Hence, we present an effective model for multiple scattering inverse design which may have diverse applications such as wavefield imaging or passive wave energy control.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here