Physics-informed State-space Neural Networks for Transport Phenomena

21 Sep 2023  ·  Akshay J. Dave, Richard B. Vilim ·

This work introduces Physics-informed State-space neural network Models (PSMs), a novel solution to achieving real-time optimization, flexibility, and fault tolerance in autonomous systems, particularly in transport-dominated systems such as chemical, biomedical, and power plants. Traditional data-driven methods fall short due to a lack of physical constraints like mass conservation; PSMs address this issue by training deep neural networks with sensor data and physics-informing using components' Partial Differential Equations (PDEs), resulting in a physics-constrained, end-to-end differentiable forward dynamics model. Through two in silico experiments -- a heated channel and a cooling system loop -- we demonstrate that PSMs offer a more accurate approach than a purely data-driven model. In the former experiment, PSMs demonstrated significantly lower average root-mean-square errors across test datasets compared to a purely data-driven neural network, with reductions of 44 %, 48 %, and 94 % in predicting pressure, velocity, and temperature, respectively. Beyond accuracy, PSMs demonstrate a compelling multitask capability, making them highly versatile. In this work, we showcase two: supervisory control of a nonlinear system through a sequentially updated state-space representation and the proposal of a diagnostic algorithm using residuals from each of the PDEs. The former demonstrates PSMs' ability to handle constant and time-dependent constraints, while the latter illustrates their value in system diagnostics and fault detection. We further posit that PSMs could serve as a foundation for Digital Twins, constantly updated digital representations of physical systems.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here