PiRL: Participant-Invariant Representation Learning for Healthcare Using Maximum Mean Discrepancy and Triplet Loss

17 Feb 2023  ·  Zhaoyang Cao, Han Yu, Huiyuan Yang, Akane Sano ·

Due to individual heterogeneity, person-specific models are usually achieving better performance than generic (one-size-fits-all) models in data-driven health applications. However, generic models are usually preferable in real-world applications, due to the difficulties of developing person-specific models, such as new-user-adaptation issues and system complexities. To improve the performance of generic models, we propose a Participant-invariant Representation Learning (PiRL) framework, which utilizes maximum mean discrepancy (MMD) loss and domain-adversarial training to encourage the model to learn participant-invariant representations. Further, to avoid trivial solutions in the learned representations, a triplet loss based constraint is used for the model to learn the label-distinguishable embeddings. The proposed framework is evaluated on two public datasets (CLAS and Apnea-ECG), and significant performance improvements are achieved compared to the baseline models.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods