Playing Chess with Limited Look Ahead

4 Jul 2020  ·  Arman Maesumi ·

We have seen numerous machine learning methods tackle the game of chess over the years. However, one common element in these works is the necessity of a finely optimized look ahead algorithm. The particular interest of this research lies with creating a chess engine that is highly capable, but restricted in its look ahead depth. We train a deep neural network to serve as a static evaluation function, which is accompanied by a relatively simple look ahead algorithm. We show that our static evaluation function has encoded some semblance of look ahead knowledge, and is comparable to classical evaluation functions. The strength of our chess engine is assessed by comparing its proposed moves against those proposed by Stockfish. We show that, despite strict restrictions on look ahead depth, our engine recommends moves of equal strength in roughly $83\%$ of our sample positions.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here