PLEX: Making the Most of the Available Data for Robotic Manipulation Pretraining

A rich representation is key to general robotic manipulation, but existing approaches to representation learning require large amounts of multimodal demonstrations. In this work we propose PLEX, a transformer-based architecture that learns from a small amount of task-agnostic visuomotor trajectories and a much larger amount of task-conditioned object manipulation videos -- a type of data available in quantity. PLEX uses visuomotor trajectories to induce a latent feature space and to learn task-agnostic manipulation routines, while diverse video-only demonstrations teach PLEX how to plan in the induced latent feature space for a wide variety of tasks. Experiments showcase PLEX's generalization on Meta-World and SOTA performance in challenging Robosuite environments. In particular, using relative positional encoding in PLEX's transformers greatly helps in low-data regimes of learning from human-collected demonstrations. The paper's accompanying code and data are available at https://microsoft.github.io/PLEX.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here