Plug-and-Play Regularization on Magnitude with Deep Priors for 3D Near-Field MIMO Imaging

26 Dec 2023  ·  Okyanus Oral, Figen S. Oktem ·

Near-field radar imaging systems are used in a wide range of applications such as concealed weapon detection and medical diagnosis. In this paper, we consider the problem of reconstructing the three-dimensional (3D) complex-valued reflectivity distribution of the near-field scene by enforcing regularization on its magnitude. We solve this inverse problem by using the alternating direction method of multipliers (ADMM) framework. For this, we provide a general expression for the proximal mapping associated with such regularization functionals. This equivalently corresponds to the solution of a complex-valued denoising problem which involves regularization on the magnitude. By utilizing this expression, we develop a novel and efficient plug-and-play (PnP) reconstruction method that consists of simple update steps. Due to the success of data-adaptive deep priors in imaging, we also train a 3D deep denoiser to exploit within the developed PnP framework. The effectiveness of the developed approach is demonstrated for multiple-input multiple-output (MIMO) imaging under various compressive and noisy observation scenarios using both simulated and experimental data. The performance is also compared with the commonly used direct inversion and sparsity-based reconstruction approaches. The results demonstrate that the developed technique not only provides state-of-the-art performance for 3D real-world targets, but also enables fast computation. Our approach provides a unified general framework to effectively handle arbitrary regularization on the magnitude of a complex-valued unknown and is equally applicable to other radar image formation problems (including SAR).

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods