Poisoning Deep Reinforcement Learning Agents with In-Distribution Triggers

14 Jun 2021  ·  Chace Ashcraft, Kiran Karra ·

In this paper, we propose a new data poisoning attack and apply it to deep reinforcement learning agents. Our attack centers on what we call in-distribution triggers, which are triggers native to the data distributions the model will be trained on and deployed in. We outline a simple procedure for embedding these, and other, triggers in deep reinforcement learning agents following a multi-task learning paradigm, and demonstrate in three common reinforcement learning environments. We believe that this work has important implications for the security of deep learning models.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here