Certifiably Robust Reinforcement Learning through Model-Based Abstract Interpretation

26 Jan 2023  ·  Chenxi Yang, Greg Anderson, Swarat Chaudhuri ·

We present a reinforcement learning (RL) framework in which the learned policy comes with a machine-checkable certificate of provable adversarial robustness. Our approach, called CAROL, learns a model of the environment. In each learning iteration, it uses the current version of this model and an external abstract interpreter to construct a differentiable signal for provable robustness. This signal is used to guide learning, and the abstract interpretation used to construct it directly leads to the robustness certificate returned at convergence. We give a theoretical analysis that bounds the worst-case accumulative reward of CAROL. We also experimentally evaluate CAROL on four MuJoCo environments with continuous state and action spaces. On these tasks, CAROL learns policies that, when contrasted with policies from the state-of-the-art robust RL algorithms, exhibit: (i) markedly enhanced certified performance lower bounds; and (ii) comparable performance under empirical adversarial attacks.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here