POMDP-lite for Robust Robot Planning under Uncertainty

16 Feb 2016  ·  Min Chen, Emilio Frazzoli, David Hsu, Wee Sun Lee ·

The partially observable Markov decision process (POMDP) provides a principled general model for planning under uncertainty. However, solving a general POMDP is computationally intractable in the worst case. This paper introduces POMDP-lite, a subclass of POMDPs in which the hidden state variables are constant or only change deterministically. We show that a POMDP-lite is equivalent to a set of fully observable Markov decision processes indexed by a hidden parameter and is useful for modeling a variety of interesting robotic tasks. We develop a simple model-based Bayesian reinforcement learning algorithm to solve POMDP-lite models. The algorithm performs well on large-scale POMDP-lite models with up to $10^{20}$ states and outperforms the state-of-the-art general-purpose POMDP algorithms. We further show that the algorithm is near-Bayesian-optimal under suitable conditions.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here