Pose Induction for Novel Object Categories

We address the task of predicting pose for objects of unannotated object categories from a small seed set of annotated object classes. We present a generalized classifier that can reliably induce pose given a single instance of a novel category... In case of availability of a large collection of novel instances, our approach then jointly reasons over all instances to improve the initial estimates. We empirically validate the various components of our algorithm and quantitatively show that our method produces reliable pose estimates. We also show qualitative results on a diverse set of classes and further demonstrate the applicability of our system for learning shape models of novel object classes. read more

PDF Abstract ICCV 2015 PDF ICCV 2015 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here