Positive-Unlabeled Classification under Class Prior Shift and Asymmetric Error

19 Sep 2018Nontawat CharoenphakdeeMasashi Sugiyama

Bottlenecks of binary classification from positive and unlabeled data (PU classification) are the requirements that given unlabeled patterns are drawn from the test marginal distribution, and the penalty of the false positive error is identical to the false negative error. However, such requirements are often not fulfilled in practice... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.