Precise Semidefinite Programming Formulation of Atomic Norm Minimization for Recovering d-Dimensional ($d\geq 2$) Off-the-Grid Frequencies

2 Dec 2013  ·  Weiyu Xu, Jian-Feng Cai, Kumar Vijay Mishra, Myung Cho, Anton Kruger ·

Recent research in off-the-grid compressed sensing (CS) has demonstrated that, under certain conditions, one can successfully recover a spectrally sparse signal from a few time-domain samples even though the dictionary is continuous. In particular, atomic norm minimization was proposed in \cite{tang2012csotg} to recover $1$-dimensional spectrally sparse signal. However, in spite of existing research efforts \cite{chi2013compressive}, it was still an open problem how to formulate an equivalent positive semidefinite program for atomic norm minimization in recovering signals with $d$-dimensional ($d\geq 2$) off-the-grid frequencies. In this paper, we settle this problem by proposing equivalent semidefinite programming formulations of atomic norm minimization to recover signals with $d$-dimensional ($d\geq 2$) off-the-grid frequencies.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here