PRECISION: Decentralized Constrained Min-Max Learning with Low Communication and Sample Complexities

5 Mar 2023  ·  Zhuqing Liu, Xin Zhang, Songtao Lu, Jia Liu ·

Recently, min-max optimization problems have received increasing attention due to their wide range of applications in machine learning (ML). However, most existing min-max solution techniques are either single-machine or distributed algorithms coordinated by a central server. In this paper, we focus on the decentralized min-max optimization for learning with domain constraints, where multiple agents collectively solve a nonconvex-strongly-concave min-max saddle point problem without coordination from any server. Decentralized min-max optimization problems with domain constraints underpins many important ML applications, including multi-agent ML fairness assurance, and policy evaluations in multi-agent reinforcement learning. We propose an algorithm called PRECISION (proximal gradient-tracking and stochastic recursive variance reduction) that enjoys a convergence rate of $O(1/T)$, where $T$ is the maximum number of iterations. To further reduce sample complexity, we propose PRECISION$^+$ with an adaptive batch size technique. We show that the fast $O(1/T)$ convergence of PRECISION and PRECISION$^+$ to an $\epsilon$-stationary point imply $O(\epsilon^{-2})$ communication complexity and $O(m\sqrt{n}\epsilon^{-2})$ sample complexity, where $m$ is the number of agents and $n$ is the size of dataset at each agent. To our knowledge, this is the first work that achieves $O(\epsilon^{-2})$ in both sample and communication complexities in decentralized min-max learning with domain constraints. Our experiments also corroborate the theoretical results.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here