Predicting Ambulance Demand: Challenges and Methods

16 Jun 2016Zhengyi Zhou

Predicting ambulance demand accurately at a fine resolution in time and space (e.g., every hour and 1 km$^2$) is critical for staff / fleet management and dynamic deployment. There are several challenges: though the dataset is typically large-scale, demand per time period and locality is almost always zero... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet