Predicting Group Cohesiveness in Images

31 Dec 2018  ·  Shreya Ghosh, Abhinav Dhall, Nicu Sebe, Tom Gedeon ·

The cohesiveness of a group is an essential indicator of the emotional state, structure and success of a group of people. We study the factors that influence the perception of group-level cohesion and propose methods for estimating the human-perceived cohesion on the group cohesiveness scale. In order to identify the visual cues (attributes) for cohesion, we conducted a user survey. Image analysis is performed at a group-level via a multi-task convolutional neural network. For analyzing the contribution of facial expressions of the group members for predicting the Group Cohesion Score (GCS), a capsule network is explored. We add GCS to the Group Affect database and propose the `GAF-Cohesion database'. The proposed model performs well on the database and is able to achieve near human-level performance in predicting a group's cohesion score. It is interesting to note that group cohesion as an attribute, when jointly trained for group-level emotion prediction, helps in increasing the performance for the later task. This suggests that group-level emotion and cohesion are correlated.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods