Predicting Physics in Mesh-reduced Space with Temporal Attention

Graph-based next-step prediction models have recently been very successful in modeling complex high-dimensional physical systems on irregular meshes. However, due to their short temporal attention span, these models suffer from error accumulation and drift. In this paper, we propose a new method that captures long-term dependencies through a transformer-style temporal attention model. We introduce an encoder-decoder structure to summarize features and create a compact mesh representation of the system state, to allow the temporal model to operate on a low-dimensional mesh representations in a memory efficient manner. Our method outperforms a competitive GNN baseline on several complex fluid dynamics prediction tasks, from sonic shocks to vascular flow. We demonstrate stable rollouts without the need for training noise and show perfectly phase-stable predictions even for very long sequences. More broadly, we believe our approach paves the way to bringing the benefits of attention-based sequence models to solving high-dimensional complex physics tasks.

PDF Abstract ICLR 2022 PDF ICLR 2022 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods