Predictive stability filters for nonlinear dynamical systems affected by disturbances

20 Jan 2024  ·  Alexandre Didier, Andrea Zanelli, Kim P. Wabersich, Melanie N. Zeilinger ·

Predictive safety filters provide a way of projecting potentially unsafe inputs, proposed, e.g. by a human or learning-based controller, onto the set of inputs that guarantee recursive state and input constraint satisfaction by leveraging model predictive control techniques. In this paper, we extend this framework such that in addition, robust asymptotic stability of the closed-loop system can be guaranteed by enforcing a decrease of an implicit Lyapunov function which is constructed using a predicted system trajectory. Differently from previous results, we show robust asymptotic stability with respect to a predefined disturbance set on an extended state consisting of the system state and a warmstart input sequence. The proposed strategy is applied to an automotive lane keeping example in simulation.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here