Preventing Unnecessary Groundings in the Lifted Dynamic Junction Tree Algorithm

2 Jul 2018  ·  Marcel Gehrke, Tanya Braun, Ralf Möller ·

The lifted dynamic junction tree algorithm (LDJT) efficiently answers filtering and prediction queries for probabilistic relational temporal models by building and then reusing a first-order cluster representation of a knowledge base for multiple queries and time steps. Unfortunately, a non-ideal elimination order can lead to groundings even though a lifted run is possible for a model. We extend LDJT (i) to identify unnecessary groundings while proceeding in time and (ii) to prevent groundings by delaying eliminations through changes in a temporal first-order cluster representation. The extended version of LDJT answers multiple temporal queries orders of magnitude faster than the original version.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here