Primal-Dual Active-Set Methods for Isotonic Regression and Trend Filtering

10 Aug 2015  ·  Zheng Han, Frank E. Curtis ·

Isotonic regression (IR) is a non-parametric calibration method used in supervised learning. For performing large-scale IR, we propose a primal-dual active-set (PDAS) algorithm which, in contrast to the state-of-the-art Pool Adjacent Violators (PAV) algorithm, can be parallized and is easily warm-started thus well-suited in the online settings. We prove that, like the PAV algorithm, our PDAS algorithm for IR is convergent and has a work complexity of O(n), though our numerical experiments suggest that our PDAS algorithm is often faster than PAV. In addition, we propose PDAS variants (with safeguarding to ensure convergence) for solving related trend filtering (TF) problems, providing the results of experiments to illustrate their effectiveness.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here