Primal Dual Interpretation of the Proximal Stochastic Gradient Langevin Algorithm

NeurIPS 2020  ·  Adil Salim, Peter Richtárik ·

We consider the task of sampling with respect to a log concave probability distribution. The potential of the target distribution is assumed to be composite, \textit{i.e.}, written as the sum of a smooth convex term, and a nonsmooth convex term possibly taking infinite values. The target distribution can be seen as a minimizer of the Kullback-Leibler divergence defined on the Wasserstein space (\textit{i.e.}, the space of probability measures). In the first part of this paper, we establish a strong duality result for this minimization problem. In the second part of this paper, we use the duality gap arising from the first part to study the complexity of the Proximal Stochastic Gradient Langevin Algorithm (PSGLA), which can be seen as a generalization of the Projected Langevin Algorithm. Our approach relies on viewing PSGLA as a primal dual algorithm and covers many cases where the target distribution is not fully supported. In particular, we show that if the potential is strongly convex, the complexity of PSGLA is $O(1/\varepsilon^2)$ in terms of the 2-Wasserstein distance. In contrast, the complexity of the Projected Langevin Algorithm is $O(1/\varepsilon^{12})$ in terms of total variation when the potential is convex.

PDF Abstract NeurIPS 2020 PDF NeurIPS 2020 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here