Principal Observation Ray Calibration for Tiled-Lens-Array Integral Imaging Display
Integral imaging display (IID) is a promising technology to provide realistic 3D image without glasses. To achieve a large screen IID with a reasonable fabrication cost, a potential solution is a tiled-lens-array IID (TLA-IID). However, TLA-IIDs are subject to 3D image artifacts when there are even slight misalignments between the lens arrays. This work aims at compensating these artifacts by calibrating the lens array poses with a camera and including them in a ray model used for rendering the 3D image. Since the lens arrays are transparent, this task is challenging for traditional calibration methods. In this paper, we propose a novel calibration method based on defining a set of principle observation rays that pass lens centers of the TLA and the camera's optical center. The method is able to determine the lens array poses with only one camera at an arbitrary unknown position without using any additional markers. The principle observation rays are automatically extracted using a structured light based method from a dense correspondence map between the displayed and captured pixels. Experiments show that lens array misalignments can be estimated with a standard deviation smaller than 0.4 pixels. Based on this, 3D image artifacts are shown to be effectively removed in a test TLA-IID with challenging misalignments.
PDF Abstract