Towards Principled Uncertainty Estimation for Deep Neural Networks

29 Oct 2018  ·  Richard Harang, Ethan M. Rudd ·

When the cost of misclassifying a sample is high, it is useful to have an accurate estimate of uncertainty in the prediction for that sample. There are also multiple types of uncertainty which are best estimated in different ways, for example, uncertainty that is intrinsic to the training set may be well-handled by a Bayesian approach, while uncertainty introduced by shifts between training and query distributions may be better-addressed by density/support estimation. In this paper, we examine three types of uncertainty: model capacity uncertainty, intrinsic data uncertainty, and open set uncertainty, and review techniques that have been derived to address each one. We then introduce a unified hierarchical model, which combines methods from Bayesian inference, invertible latent density inference, and discriminative classification in a single end-to-end deep neural network topology to yield efficient per-sample uncertainty estimation in a detection context. This approach addresses all three uncertainty types and can readily accommodate prior/base rates for binary detection. We then discuss how to extend this model to a more generic multiclass recognition context.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here