Prior-free and prior-dependent regret bounds for Thompson Sampling

NeurIPS 2013  ·  Sébastien Bubeck, Che-Yu Liu ·

We consider the stochastic multi-armed bandit problem with a prior distribution on the reward distributions. We are interested in studying prior-free and prior-dependent regret bounds, very much in the same spirit as the usual distribution-free and distribution-dependent bounds for the non-Bayesian stochastic bandit. Building on the techniques of Audibert and Bubeck [2009] and Russo and Roy [2013] we first show that Thompson Sampling attains an optimal prior-free bound in the sense that for any prior distribution its Bayesian regret is bounded from above by $14 \sqrt{n K}$. This result is unimprovable in the sense that there exists a prior distribution such that any algorithm has a Bayesian regret bounded from below by $\frac{1}{20} \sqrt{n K}$. We also study the case of priors for the setting of Bubeck et al. [2013] (where the optimal mean is known as well as a lower bound on the smallest gap) and we show that in this case the regret of Thompson Sampling is in fact uniformly bounded over time, thus showing that Thompson Sampling can greatly take advantage of the nice properties of these priors.

PDF Abstract NeurIPS 2013 PDF NeurIPS 2013 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here