Privacy Assessment of Federated Learning using Private Personalized Layers

15 Jun 2021  ·  Théo Jourdan, Antoine Boutet, Carole Frindel ·

Federated Learning (FL) is a collaborative scheme to train a learning model across multiple participants without sharing data. While FL is a clear step forward towards enforcing users' privacy, different inference attacks have been developed. In this paper, we quantify the utility and privacy trade-off of a FL scheme using private personalized layers. While this scheme has been proposed as local adaptation to improve the accuracy of the model through local personalization, it has also the advantage to minimize the information about the model exchanged with the server. However, the privacy of such a scheme has never been quantified. Our evaluations using motion sensor dataset show that personalized layers speed up the convergence of the model and slightly improve the accuracy for all users compared to a standard FL scheme while better preventing both attribute and membership inferences compared to a FL scheme using local differential privacy.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here