Probabilistic Charging Power Forecast of EVCS: Reinforcement Learning Assisted Deep Learning Approach

17 Apr 2022  ·  Yuanzheng Li, Shangyang He, Yang Li, Leijiao Ge, Suhua Lou, Zhigang Zeng ·

The electric vehicle (EV) and electric vehicle charging station (EVCS) have been widely deployed with the development of large-scale transportation electrifications. However, since charging behaviors of EVs show large uncertainties, the forecasting of EVCS charging power is non-trivial. This paper tackles this issue by proposing a reinforcement learning assisted deep learning framework for the probabilistic EVCS charging power forecasting to capture its uncertainties. Since the EVCS charging power data are not standard time-series data like electricity load, they are first converted to the time-series format. On this basis, one of the most popular deep learning models, the long short-term memory (LSTM) is used and trained to obtain the point forecast of EVCS charging power. To further capture the forecast uncertainty, a Markov decision process (MDP) is employed to model the change of LSTM cell states, which is solved by our proposed adaptive exploration proximal policy optimization (AePPO) algorithm based on reinforcement learning. Finally, experiments are carried out on the real EVCSs charging data from Caltech, and Jet Propulsion Laboratory, USA, respectively. The results and comparative analysis verify the effectiveness and outperformance of our proposed framework.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods